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Abstract

An analytical solution for the cylindrical bending vibrations of linear piezoelectric laminated plates is obtained by
extending the Stroh formalism to the generalized plane strain vibrations of piezoelectric materials. The laminated plate
consists of homogeneous elastic or piezoelectric laminae of arbitrary thickness and width. Fourier basis functions for
the mechanical displacements and electric potential that identically satisfy the equations of motion and the charge
equation of electrostatics are used to solve boundary value problems via the superposition principle. The coefficients in
the infinite series solution are determined from the boundary conditions at the edges and continuity conditions at the
interfaces between laminae, which are satisfied in the sense of Fourier series. The formulation admits different boundary
conditions at the edges of the laminated piezoelectric composite plate. Results for laminated elastic plates with either
distributed or segmented piezoelectric actuators are presented for different sets of boundary conditions at the edges.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

When piezoelectric materials are integrated with structures, they are capable of altering the structure’s
response through sensing, actuation and control. Such structural systems, known as smart structures, are
increasingly being used for self vibration suppression and health monitoring.

Initially piezoelectric actuators were used to control vibrations of beams (Bailey and Hubbard, 1985;
Crawley and de Luis, 1987). The piezoelectric actuators used in beams are thin rectangular elements usually
bonded to their outermost surfaces and are poled in the thickness direction. The application of an electric
field in the thickness direction causes the actuator’s lateral dimensions to change. The localized strains
induced by the piezoelectric actuator in the host structure cause it to deform. In order to effectively inte-
grate piezoelectric materials with structural systems, it is necessary to understand better the interaction
between actuators and the base structure. Mechanical models have been developed by Crawley and de Luis
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(1987), Crawley and Anderson (1990) and others to analyze deformations and stresses in beams with
surface-bonded piezoelectric actuators. Lee (1990), Wang and Rogers (1991), Batra and Ghosh (1995),
Ghosh and Batra (1995), and Mitchell and Reddy (1995) have developed plate theories for composite
laminates with embedded and/or surface mounted piezoelectric sensors and actuators. Numerous finite
element studies have also been conducted (Allik and Hughes, 1970; Robbins and Reddy, 1991; Ha et al.,
1992; Batra and Liang, 1997b; Batra and Geng, 2002).

Three-dimensional analytical solutions for the deformations and stresses in simply supported composite
plates with piezoelectric layers have been given by Heyliger (1994, 1997), Heyliger and Brooks (1996),
Heyliger and Saravanos (1995), Bisegna and Maceri (1996), Batra et al. (1996a), Batra and Liang (1997a),
Lee and Jiang (1996) and Vel and Batra (2000a, 2001b), and for a functionally graded plate by Vel and
Batra (2002). If one of the plate dimensions is very large as compared to the other two dimensions, then its
deformations are generally regarded as being independent of the coordinate in that direction and the state
of deformation is called cylindrical bending. Exact solutions for cylindrical bending of simply supported
laminated plates were developed by Heyliger and Brooks (1996) and Vel and Batra (2001a), and for a
functionally graded plate by Vel and Batra (2003), and for the cylindrical bending vibrations by Heyliger
and Brooks (1995) and Yang et al. (1994). Brooks and Heyliger (1994) and Batra et al. (1996b) simulated
a segmented piezoelectric actuator by applying an electric potential only over a part of a distributed
piezoelectric actuator. Besides the edges being simply supported, only specific types of electric boundary
conditions were considered and all layers were required to have the same width. However, simply supported
edges are rarely encountered in practice and most smart structures have segmented piezoelectric patches
with width much smaller than that of the host structure. Batra and Aimmanee (2003) have found fre-
quencies missing in previous analytical solutions of free vibrations of simply supported homogeneous and
laminated plates.

Vel and Batra (2000a) developed a three-dimensional quasi-static solution using the Stroh formalism for
laminated piezoelectric rectangular plates subjected to arbitrary mechanical and electrical boundary con-
ditions. Subsequently, they presented results for quasi-static cylindrical bending deformations of a lami-
nated plate with segmented piezoelectric patches (Vel and Batra, 2000b). Here we analyze cylindrical
bending vibrations of a laminated plate with embedded or surface mounted piezoelectric patches. Three-
dimensional equations of linear piezoelectricity for generalized plane strain deformations are exactly
satisfied by the chosen Fourier basis functions. Instead of assuming that the mechanical displacements and
the electric field in the direction of the very large plate dimension vanish identically, the electric potential
and the three components of the mechanical displacement are assumed to depend only on the two in-plane
coordinates and time. The coefficients in the series solution are determined from boundary conditions at
edges and continuity conditions at the interfaces between adjoining laminae. Computed natural frequen-
cies, displacements and stresses for thick cantilever laminates containing either distributed or segmented
actuators are found to compare very well with those obtained by the finite element method. We note that at
the fixed end, all three components of mechanical displacement are set equal to zero.

2. Problem formulation

We use a rectangular Cartesian coordinate system, shown in Fig. 1, to describe the infinitesimal quasi-
static deformations of a piezoelectric laminate occupying the region [L1),LM#1] x (—00,00) x
[HY, H™+D] in the unstressed reference configuration. Planes x; = HY ... H") ... H®*D describe the
bottom bounding surface, the horizontal interfaces between adjoining laminae, and the top bounding
surface. Planes x; = L) ... L0W . LW+ are respectively the left bounding surface, the vertical inter-
faces between adjoining laminae, and the right bounding surface. If the region [L!"), Lm+1)] x
(—00,00) x [H™) H™+1)] is occupied by material, we refer to it as the (n;,n3)th lamina.
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Fig. 1. Piezoelectric composite plate.

The equations of motion in the absence of body forces are
Ojmm = p”j (j,mz 17273)7 (1)

where ¢, are components of the Cauchy stress tensor, p is the mass density and u; are components of the
mechanical displacement vector. A comma followed by index j indicates partial differentiation with respect
to the present position x; of a material particle, a superimposed dot indicates partial derivative with respect
to time ¢, and a repeated index implies summation over the range of the index. The charge equation in the
absence of free charges is

Dy =0, 2)

where D,, are components of the electric displacement vector.
The constitutive equations of a linear piezoelectric medium are (Tiersten, 1969)

Gjm = ijqrgqr - erijra Dm = emqreqr + 6mrE‘ra (3)

where C,, is the elasticity tensor, ¢, is the infinitesimal strain tensor, e,;, are the piezoelectric coefficients
that describe coupling between the mechanical deformation and electric field, E, is the electric field and ¢,
is the electric permittivity tensor. The infinitesimal strain tensor and the electric field are related to the
mechanical displacement u, and the electric potential ¢ by

1
Eqr = E (uq,r + ur,q)? Er = _d)z (4)

The symmetry of the stress and the strain tensors and the existence of the stored energy function imply
the following symmetries

C/'mqr = Cmjgr = quj/'ma erjm = er‘mja Emr = €rm- (5)

Material constants are assumed to yield a positive stored energy density for every non-rigid deformation
and/or non-zero electric field. That is,

ijqrgjmgqr > Oa 6rmErEm > Oa (6)

for every real non-zero ¢;, and E,.
The boundary conditions on the top and bottom surfaces and the continuity conditions on the interface
x3 = H™) of the (n;,n3)th lamina may be specified as follows:



1628 S.S. Vel et al. | International Journal of Solids and Structures 41 (2004) 1625-1643

(a) If the surface is not in contact with any other lamina, then boundary conditions are specified as

J[;} —&—j[gj = f(x;) cos wt onx; =H"™, (7)
where w is the forcing frequency and
(O'k),- = Oik- (8)

The function f(x;) is prescribed and J, J are 4x4 diagonal matrices with their elements functions of at
most x;. For most applications these diagonal matrices have entries either zero or one such that J +J =1,
where I is the 4x4 identity matrix. For example, if the surface is electroded and surface tractions are
prescribed, then J = diag[0,0,0, 1] and J = diag[1, 1, 1,0].

(b) If the surface is an interface between two laminae, then displacements, surface tractions, electric poten-
tial and the normal component of the electric displacement between them are taken to be continuous.
That is

[[ll]} =0, [[63] =0, [d)] =0, [[D3] =0 onux;= H™). (9)

Here [#] denotes the jump in the value of % across an interface. Thus the adjoining laminae are
presumed to be perfectly bonded together. We assume that the electrode is of negligible thickness.
(c) If the surface is an electroded interface, then the potential on this surface is a known function f(x;)
while the normal component of the electric displacement need not be continuous across this interface,
ie.,

[u] =0, [o3]=0, ¢=f(x;)coswt onx3=H", (10)

The boundary/interface conditions may be similarly specified on the other three bounding surfaces
x3 = H" ) x; = L) and x; = L+, Note that the problem formulation allows for the length of a lamina
to be less than the span L of the plate. Said differently, the region H") <x; <H™*D, 0<x; <L could be
divided into several sections by vertical and horizontal planes with each section made of a different
material.

We postulate that the displacement u and the electrical potential ¢ are functions of x|, x; and time #; thus
deformations of the laminate correspond to a generalized plane state of deformation. This assumption is
reasonable since applied loads (mechanical and electrical) and material properties are independent of x, and
the body is of infinite extent in the x, direction.

3. An analytical solution

We construct a local coordinate system x\"" x"") x{"") with origin at the point (L"), 0, H")) in the
global coordinate system and the local axes parallel to the global axes. The length and thickness of the
(n1,n3)th lamina are denoted by [(73) = Ltn+1) — [(m) - pnss) — prim+) _ pp(m) In this section, we drop
the superscripts (n;, n3) for convenience, it is understood that all material constants and unknowns belong
to this lamina.

An analytical solution is obtained by extending the Stroh (Eshelby et al., 1953; Stroh, 1958; Ting, 1996)
formalism to the analysis of steady state vibrations of piezoelectric composite plates. Fourier basis func-
tions for the mechanical displacements and the electric potential, which identically satisfy the equations of
motion (1) and charge equation (2), are used to compute the solution of the boundary value problem via the
superposition principle. The coefficients in the series solution are determined from the boundary conditions
(7) and continuity conditions (9) or (10) at the interfaces between adjoining laminae.
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3.1. Sinusoidal basis functions in the x;-direction

We assume the following form for the displacement vector and the electric potential
[;} = aexp(ilz) cos wt, (11)

where z = x| + px;, i = v/—1, J is a real number and the vector a and the scalar p will be determined from
the equations of motion and the charge equation. The assumed mechanical displacement and the electric
potential fields in (11) vary sinusoidally in the x;-direction and A determines its spatial period in that
direction. Depending on whether p is complex or real, the assumed displacement and potential field (11) has
either an exponential and/or sinusoidal variation in the x;-direction. Substitution for u and ¢ from (11) into
(4) and for ¢ and E into (3) gives the following expressions for components o;, of the stress tensor and D,, of
the electric displacement vector:

Gim = (Cimgray + €,jnaa)Ai(0,1 + pd,3) exp(Aiz) cos wt,

12
Dy = (emgraty — €mras) 2i(0,1 + pdy3) exp(Liz) cos wt, 12
where 0, is the Kronecker delta. Substitution of (12) into the equation of motion (1) gives
2 b) po’
{Ciigr +P(Ciiz + Ca1j3) + P°Cpgatag + {en; + plesi; + ery;) + pesytas = G (13)
which can be written as
O B RT 27 & 2 par? -
{Q+p[R+R|+pTla+ {en +ples +ei3) +pentas = —a (14)
where
qu = Ljlqls qu = Lj1g3, qu = Cj3q37 (erm)j = €rmj, a=|a|. (15)
as
Substitution for D, from (12) into the charge equation (2) gives
{eng +plesiy +eizg) + PPessgtag — {en +ples + 1) + pessas = 0, (16)
which can be written as
{ei1 + ples +ei3) + plesta — {1 + plers + e31) + pexstas = 0. (17)
The two Egs. (14) and (17) can be combined to obtain (Ting, 1996)
{Q +p[R+R"]+ p*Tla =0, (18)
where
~ 2 O
Q:Q_@dlagU)l)l)OL Q: Q e )
A elTl —€11
(19)
R =

ﬁ €3]
3 ’ T —
T
€3 —€3

T €33
T .
€33 —€33

Eq. (18) can be stated as the following algebraic eigenvalue problem (Ting, 1996)
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a a
A HEN] (20)
where
_T-'RT T!
= “1pT A 1|
RT'RT—Q —RT 1)
1 ~
b= (R" +pT)a = —;(Q + pR)a.

The components (12) of the stress tensor and electric displacement vector can be written as

{;1 ] = Ai[Q + pRJaexp(4liz) cos wt,

1

(22)
o
L; ] = Ji[R" 4 pT]aexp(Jiz) cos wt.
3
Since N is an 88 real matrix, there are eight eigensolutions (p,,a,), « =1,2,...,8, to the algebraic

eigenvalue problem (20); these eigensolutions depend upon values of the electromechanical parameters and
the frequency w. If p is a complex eigenvalue and a is the corresponding complex eigenvector, then the
complex conjugates p and a also form an eigensolution. Let there be 2x complex and 8 — 2k real eigen-
values. They are arranged as py, ..., P, Diils - - - > Pocs Presl, - - - » Pg SUch that

Im(p,) >0, pey =Dy, Auu=2a, (@=1,...,k). (23)

Mechanical displacements,(elegtric potential, stresses and electric displacements vary sinusoidally in the
ny,n3

xi-direction on the surface xj = 0. The basis function (11) constitutes one term of a Fourier series
solution that will be used to satisfy the boundary conditions on xg’”"”) = 0. For complex p,, the basis
function decays exponentially in the x;-direction due to the inequality in Eq. (23). The basis functions
corresponding to real p, vary sinusoidally in the x;-direction.

In a similar manner, the following basis functions
[;} = aexp|Li(ph — z)] cos wt, (24)

are used to satisfy the boundary conditions on the surface x; = 4 of laminae (n,n3). Substitution of
(24) into the equation of motion (1) and the charge equation (2) also results in the eigenvalue prob-
lem (20) for p and a. The corresponding components of the stress tensor and the electric displacement
vector are

{gl ] = —i[Q + pRlaexp|Li(ph — z)] cos wt,
i (25)

{53 ] _ _/h.[RT —|—pT]anpW(Ph — Z)] COS wi.
3

3.2. Sinusoidal basis functions in the xs;-direction

We assume the following form for the displacement vector and electric potential

[;} = cexp(&iz/q) cos wt, (26)
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where ¢ is a real number, z = x; + ¢gx; and the vector ¢ and the scalar ¢ are unknowns. Note that
z/q = x1/q + x3. The variation of the assumed mechanical displacement and electric field (26) in the x;-
direction is sinusoidal and ¢ determines the wave length. Depending on whether ¢ is complex or real, the
assumed displacement and potential fields vary either exponentially and/or sinusoidally in the x;-direction.
From Egs. (26), (4) and (3) we obtain

gi .
Ojm = ; (ijqrcq + erjmc4)(5rl + q5r3) exp(fzz/q) Cos wf,

.. (27)
D, = %(emqrcq — emC4) (0,1 + q0,3) exp(&iz/q) cos wt,
which we write as
{ 7! } = o [Q + gR]cexp(&iz/q) cos wt,
D, q
¢ (28)
o
[ ’ } =< [R" + ¢T]eexp(&iz/q) cos wt,
D; q
where Q, R and T are defined in (19). Substitution of (26) and (27) into (1) and (2) gives
{Q+¢R+R+¢'T}e=0, (29)
where
. 2
T=T- péizdiag[l, 1,1,0].
Eq. (29) constitutes the following algebraic eigenvalue problem:
c c
NHEHE (30)
where
_AflRT :[\‘71
N= RT*TRT ~Q -RI'[
Q (31)

d=(R"+4T)c= (Q +¢R)e.

1

q

Eigenvalues of (30) are arranged in the same was as those of (20). The basis function (26) makes one term

of a Fourier series solution used to satisfy boundary conditions on the surface x; = 0 of the (ny,n3)th

lamina. Similarly, the following basis function (32) is used to satisfy the boundary conditions on the surface
x; = [ of the lamina (ny,n3)

[H = cexpléi(l — z)/q] cos wt. (32)
The stresses and the electric displacements corresponding to the basis function (32) are

{;11 } - % [Q + gR]cexp|Ci(l — z) /q] cos wt,

[gj - _% [R" + ¢T]cexp|&i(l — z)/g] cos wt.
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3.3. Superposition of basis functions

For distinct p,, we can superimpose solutions of the form (11), (24), (26) and (32) to obtain the following
mechanical displacement and electric potential fields:

00 8
HE {Z S exp(iE) + 50 explii(ph — ) Jald
=0 =l
00 8 (m) +=(m) (m);7 _ 5(m)
éa iz, (m) é:x l(l Zy ) (m)
+ Z Z { exp ( ) +w,"exp | =———— | pe)” pcos (34)
m=0 o=l qu qo
where
i g Cmn =
0 _ J o if k=0 m) _ wh L
‘ {kT 1 LI i St (33)
o
20 = x; 4 pPxs, 2" = x| + ¢")x3 and (ko,mo) € (0, 1). The basis functions corresponding to A”) and ¢

play the role of the constant term in the Fourier series expansion. The constants 7©), s%_ (™ and w(™ are
the Fourier coefficients in the series solution. In order to obtain real valued displacements and potentials,
we assume that the coefficients r,, s,, v, and w, are complex for o« <2k and real for o > 2k, such that
Pieia = oy Sietq = Su» Utg = Uyy Wiery = Wy for o =1,... k.

The components of the stress tensor and the electric displacement vector corresponding to the series
solution (34), obtained by superposition of Egs. (22), (25), (28) and (33), are

[ ] B { YD Air® exp(2izl)) — s exp2Mi(ph — Z0)]HQ + pR]ald
k=0 o

=
}[Q-i—ql Rc!” >}coswt,

8
S f o (SRR [
D e | g | —wiexp | =
o qo
(36)

m=0 a=1 Yo

AWilr® exp(1Piz0) — s® exp[APi(p®Ph — 2N }RT + p®T]al®)

(m) (m) i=(m) (m) ;07 _ 5(m)
éoz ! v(m) exp éoz iz, _ W(m) exp éa l(l Zy )
Em} o (m) o q;m)

}[RT +q"T)e” } cos wt.

(37)

4. Satisfaction of boundary and interface conditions

The unknowns #%, s®_ (™ wm for each lamina (n;,n;) are determined by imposing the interface
continuity conditions and boundary conditions on all surfaces of the laminate by the classical Fourier series
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method. For example, let boundary conditions (7) be specified on the surface x3 = 0 of lamina (1,1). We
multiply (7) by exp(jmix\""/10:)) and integrate with respect to x{"" from —/) to /(1) to obtain

jany u (1,1) pu (L,1) | nix(l’l) :
(1,1) TJ1,1) 3 (1,1) ¢ (1,1 . 1 Ly
/,[(1.1) {J [¢] +J |:D3:| —f (xl )} eXp <J J(LD) )dxl =0, (38)

on x; =0forj=0,1,2,... In Eq. (38) the functions multiplying the coefﬁcwnts 0 and s® (k # 0) have
a sinusoidal variation in the x; direction and are extended over the interval (=1 0 ) w1thout modification
since they form the basis functions on this surface. The functions multiplying v and w have an
exponential or sinusoidal variation in the x) direction; these are extended as even functions over the interval
(—=11D.0). The functions multiplying #”, s(”) are also extended as even functlons since they play the role of
the constant term in the Fourler series expansmn The known function ! (x| (L )) is extended in a suitable
manner. If the surface x3 = ( is an interface between two adjoining laminae then the conditions (9) or (10)
are enforced instead of (7). Thus, upon imposing the boundary/interface conditions on all four bounding
surfaces of every lamina in the laminated plate, we obtain an infinite system of linear algebraic equations
for the infinitely many unknown coefficients. A general theory for the solution of an infinite set of algebraic
equations does not exist. However, reasonably accurate results may be obtained by truncating the series
with summation indices k and m in (34) to K1) and M ") terms respectively for the (n;,73)th lamina. In
general, we try to maintain approximately the same wave length of the largest harmonic on all the bounding
surfaces of the lamina by choosing K1) = Ceil(K/™") /L) and M) = Ceil(Kh"") /L), where Ceil(y)
equals the smallest integer greater than or equal to y. Thus the total number of unknowns will depend solely
on the choice of integer K. Once the unknown coefficients have been evaluated by solving the truncated
system of linear equations, the displacements and stresses in each lamina are obtained from (34), (36) and
(37).

5. Results and discussion

A piezoelectric composite structure has a series of natural frequencies that can be arranged in ascending
order as w;, j =1,2,3,.... These are determined by applying a potential to the piezoelectric actuator and
plotting the vertical or axial component of the displacement for a specific point in the plate as a function of
the forcing frequency. The displacement becomes large at certain discrete values of the forcing frequency,
which signifies the resonance phenomenon.

5.1. Validation of the approach

The solution procedure and the program developed for numerical computations was validated by
comparing the natural frequencies with those given by Heyliger and Brooks (1995) for the cylindrical
bending vibration of a simply supported monolithic piezoelectric plate of length L = 0.04 m and thickness
H = 0.01 m. The mechanical boundary conditions at the edges x; =0 and L are specified as u3 =0,
a1 = o1, = 0. The edges, and the bottom surfaces of the plate are electrically grounded to zero potential.
Natural frequencies corresponding to the first axial mode of vibration are tabulated by Heyliger and
Brooks (1995). A sinusoidal potential ¢(x;, H) = ¢, sin(mx; /L) cos wt is applied to the top surface to excite
various thickness modes corresponding to the first axial mode of vibration. The plate is made of PZT-4
whose non-zero material constants are given in Table 1. The axial displacement u,(0,0) is plotted as a
function of the normalized forcing frequency @ in Fig. 2, where @ = w(L?/H)+/py/Co> py = 7600 kg/m?
and Cy = 138.499 GPa. The axial displacement becomes large at @ = 2.2603, 10.087, 24.088, 41.663 and
49.511, which are natural frequencies of the plate. It should be noted that we will obtain the same set of
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Table 1
Non-vanishing material properties of the graphite—epoxy, the PZT-4 and the PZT-5A materials poled in the x; direction

Material property Graphite/epoxy PZT-4 PZT-5A
Cin (GPa) 183.443 138.499 99.201
Cr (GPa) 11.662 138.499 99.201
Cs333 (GPa) 11.662 114.745 86.856
Ci22 (GPa) 4.363 77.371 54.016
Cii33 (GPa) 4.363 73.643 50.778
Ca33 (GPa) 3.918 73.643 50.778
Cr33 (GPa) 2.870 25.6 21.100
C3131 (GPa) 7.170 25.6 21.100
Cia12 (GPa) 7.170 30.6 22.593
ey (Cm™2) 0 =52 -7.209
e (Cm‘z) 0 -5.2 -7.209
ey (Cm™2) 0 15.08 15.118
;3 (Cm™2) 0 12.72 12.322
e; (Cm™2) 0 12.72 12.322
€11 (1078 F/m) 1.53 1.306 1.53
€2 (1078 F/m) 1.53 1.306 1.53
€3 (1078 F/m) 1.53 1.1151 1.50
p (kg/m®) 1590 7600 7750

X 105
25 ‘
2.0f .
® =2.2603 S
<3 15r ®=49511
& ==
& ® = 10.087
S ===
=™ 1.0} |
=2 o = 41.663
® = 24.088
05} .
0 ‘ ‘ ‘ ‘
0 10 20 30 40 50 60
o

Fig. 2. First five normalized natural frequencies and mode shapes corresponding to the first axial mode of vibration for a thick simply
supported PZT-4 plate.

natural frequencies if we plot the transverse displacement u3(L/2,0) as a function of the forcing frequency w
except for the in-plane distortional modes for which the transverse displacement identically vanishes (e.g.,
see Batra and Aimmanee, 2003). The mode shapes corresponding to the natural frequencies are shown next
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Normalized natural frequencies @ of a simply supported thick piezoelectric plate (L/H = 4)
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Thickness mode

Present analysis

Heyliger and Brooks (1995)

Finite element analysis

1 2.2603 2.2606 2.2602
2 10.087 10.082 10.087
3 24.088 24.086 24.085
4 41.663 41.700 41.663
5 49.511 49.616 49.511
Table 3
Convergence study for the graphite/epoxy-PZT5A cantilever composite laminate (L/H = 5)
K (,()1L2 & u;(%,%) ul(%,H) 105(]5(%%,)60 100’]1(%,0)[1 100’]3(%,'%’)[;
H VG uz(L, %) us(L, %) Cous(L,%) Cous(L, %) Cous (L, %)
50 1.1164 0.4034 —-0.1470 8.279 2.747 0.2416
100 1.1149 0.4031 —-0.1471 8.345 2.746 0.2409
150 1.1146 0.4032 -0.1471 8.362 2.743 0.2408
200 1.1145 0.4032 —-0.1471 8.368 2.744 0.2408
250 1.1144 0.4032 -0.1472 8.371 2.746 0.2408
300 1.1144 0.4032 —-0.1472 8.374 2.747 0.2408
350 1.1144 0.4032 -0.1472 8.375 2.746 0.2408
400 1.1144 0.4032 —-0.1472 8.375 2.746 0.2408

Fig. 3. First 12 normalized natural frequencies and mode shapes for the cantilever graphite/epoxy-PZTSA composite plate.



1636 S.S. Vel et al. | International Journal of Solids and Structures 41 (2004) 1625-1643

1— 1
l"
0.8} 08
H
06f 0.6
Z t I
< JE— Xl/L =0.15 <
0.4 --- X/L =05 0.4
- X1/L =0.85
0.2 = » Finite Element 0.2
— %
0 0.01 0.02 0.03 -0.2
(@ (X1 X)e/Co Ug(LH/2) (b)
1 " =0
L] . ® N
-»( H hs il
0.8 " . 0.8 R n
[ " -
(BN .“. "
06 A 06 .
z : z hS 4
N ;«;04 .‘\ 1
04 . H -
-’ ~
02 0.2 o el
0 i 0 haz= =
-03 -02 -01 0 01 02 03 04 0 0.01 0.02 0.03
© G, (X1, X3)LICy Ug(L ,H/2) (d) O, X:XLIGy ug(L H/2)

Fig. 4. Through-the-thickness variation of the electric potential, axial displacement, longitudinal stress and transverse shear stress for
the cantilever graphite/epoxy-PZT5A composite plate compared to the finite element solution for mode 1.

to the peaks in the displacement vs. frequency curve. Natural frequencies corresponding to the higher axial
modes of vibration can be obtained by applying a sinusoidal potential ¢(x;, H) = ¢, sin(gnx, /L) cos wt to
the top surface of the piezoelectric plate, where ¢ is an integer that determines the axial mode.

Finite element (FE) analysis was also performed using ABAQUS (ABAQUS, 2002) for comparison.
The FE solution is based on the plane strain assumption in which u3; = 0 and u;, u, and ¢ are functions
of x1, x, and ¢. The FE mesh consisted of 10,000 eight noded biquadratic elements. The first five thickness
modes corresponding to the first axial mode of vibration obtained from our analytical solution are
compared with those given by Heyliger and Brooks (1995) and the FE method in Table 2. The natural
frequencies from the three solution procedures are nearly identical. The computational effort required to
obtain the Fourier coefficients for the analytical solution is nearly the same as the effort required for the
FE analysis. However, it should be noted that the analytical solution satisfies the equation of motion and
charge equation exactly at every point within the body, whereas the FE solution satisfies these equations
only in a weak sense. Furthermore, once a computer program has been developed to compute the
Fourier coefficients, the input is essentially trivial and no discretization of the domain and no element
connectivity is required.

5.2. Two-layer cantilever composite plate

Consider a two-ply piezoelectric composite laminate with the bottom layer made of graphite/epoxy with
fibers parallel to the x;-axis and the top layer made of PZT-5A. The dimensions of the composite plate are
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Fig. 5. Axial variation of the electric potential, transverse displacement, longitudinal stress and transverse shear stress for the cantilever
graphite/epoxy-PZT5A composite plate compared to the finite element solution for mode 1.

L=0.1 m, H=0.025 and both layers are of equal thickness. The edge x; =0 is clamped (i.e.,
u; = up = uz = 0) and the edge x; = L is traction free (i.e., o = oo = g3 = 0). The edges and top surface
of the PZT-5A layer are electrically grounded to zero potential. The interface between the PZT-5A and
graphite/epoxy layers is electroded and electrically grounded to zero potential.

The effect of truncation of the series on the accuracy of the natural frequencies, displacements and
stresses corresponding to the first mode of vibration is investigated by computing the solution at spe-
cific points in the laminate. The first natural frequency and the corresponding displacements, electric
potential and stresses at specific points of the piezoelectric composite laminate are listed in Table 3 for
increasing number of terms K. The natural frequencies are normalized as @®; = w;(L*/H)+\/p,/Co,
po = 7750 kg/m® and Cp = 99.201 GPa. These results show that the natural frequencies, mechanical
displacements, stresses and electric potential converge rapidly. The results in this section are computed
using K = 400.

The first 12 mode shapes and the corresponding natural frequencies are shown in Fig. 3. The mode
shapes are depicted by plotting the deformed shapes of material lines that in the reference configuration are
parallel to the x,- and x3-axes. There is significant change in the thickness of the laminate for modes 9 and
12.

The through-the-thickness variation of the electric potential ¢, axial displacement u,, longitudinal stress
011 and transverse shear stress o3 at three locations along the span of the laminate for the first mode of
vibration are shown in Fig. 4 along with values obtained from FE analysis (ABAQUS, 2002). Since dis-
placements and stresses at a natural frequency are very large, they have been normalized by the value of the
tip deflection, u3(L, H/2). The analytical and the FE values are almost identical. The electric potential ¢ in
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Fig. 6. Through-the-thickness variation of the axial displacement, electric potential, longitudinal stress and transverse shear stress for
the cantilever graphite/epoxy-PZT5A composite plate for mode 2.

the piezoelectric layer has a parabolic variation in the thickness direction. The longitudinal stress oy; is
discontinuous at the interface x;/H = 0.5 due to the discontinuity in the material properties of the two
layers. The transverse shear stress o3 is continuous across the interface between the layers since they are
perfectly bonded together and tractions have been assumed to be continuous. Although the transverse shear
stress o3 is parabolic at the mid-span x,/L = 0.5, it deviates from the parabolic profile near the clamped
and free edges. The axial variations of the electric potential, transverse deflection, longitudinal stress and
transverse shear stress are depicted in Fig. 5. A steep variation of the electric potential ¢ and of the
transverse shear stress g3 is observed at the clamped edge. Here too, the analytical and the FE results are in
good agreement with each other.

The through-the-thickness distributions of the normalized axial displacement u,, electric potential ¢,
longitudinal stress ¢;; and transverse shear stress g3 at four sections along the span of the cantilever
laminate for the second mode of vibration are shown in Fig. 6. Although the axial displacement u; is an
affine function of the thickness coordinate at the mid-span x;/L = 0.5, it is non-linear near the clamped
edge x; = 0.1L and the free edge x; /L = 0.9 (see Fig. 6a). It should be noted that the transverse shear stress
does not have a parabolic profile in the thickness direction as is usually the case for a monolithic
homogenous plate.

Fig. 7 exhibits the through-the-thickness variation of the axial displacement and stresses for the third
mode of vibration. The axial displacements of all points in the thickness direction have the same sign, thus
indicating that this is primarily an axial mode of vibration. The transverse shear stress g;; is very large at
the interface between the PZT-5A and the graphite/epoxy layers near the clamped and free edges of the
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Fig. 7. Through-the-thickness variation of the axial displacement, electric potential, longitudinal stress and transverse shear stress for
the cantilever graphite/epoxy-PZT5A composite plate for mode 3.

plate. The transverse normal stress o33 is depicted in Fig. 7d. The longitudinal stress o, is an order of
magnitude larger than the transverse shear stress o3, which in turn is an order of magnitude larger than the
transverse normal stress os;.

It should be noted that the stresses and electric displacement field could be singular at points where the
top surface, bottom surface and interfaces intersect the edges. The asymptotic solution at these points can
be analyzed by assuming that the displacement and electric potential to be proportional to z*!, where
z, = x| + ¢.x3 and (x1,x3) is measured from the point and ¢ is an eigenvalue to be determined (Ting, 1996).
In our analysis, we have not explicitly included terms to represent the singular stress fields.

5.3. Cantilever plate with surface-boded piezoelectric segmented actuator

The final example concerns a homogeneous graphite/epoxy cantilever substrate with a PZT-5A actuator
patch bonded to its upper surface as shown in Fig. 8. The dimensions are L = 0.1 m and H = 0.25 m. The

T L/4 —] PZT-5A |0.3H
e | L/2 K t
é Graphite/epoxy 0.7H
Z R A

1 L |

Fig. 8. Cantilever graphite/epoxy substrate with a segmented PZT-5A actuator bonded to its upper surface.
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faces x3 = 0.7H and H of the PZT actuator are electroded and electrically grounded and the edges
x; = 0.25L and 0.75L are free of electric charge (D; = 0). To accommodate the abrupt change in thickness
of the structure due to the piezoelectric actuator, we divide the graphite/epoxy substrate into three regions
by introducing virtual vertical interfaces at x; = L/4 and 3L/4. The continuity of the mechanical dis-
placements and tractions are enforced along these vertical interfaces. Due to the introduction of the vertical
interfaces, the structure consists of four laminae including the actuator. The first six natural frequencies and
mode shapes are depicted in Fig. 9. Unlike the other five modes of vibration, there is significant axial
extension of the beam in the fourth mode of vibration.

Through-the-thickness variations of the longitudinal stress o, at three locations along the span of the
beam for the first four modes are shown in Fig. 10. The variation of the longitudinal stress in almost
affine at x; = 0.2L in the first mode of vibration as shown in Fig. 10a. However, the through-the-
thickness variation of ¢ is non-linear at the location x; = 0.26L which is close to the edge of the PZT
actuator, and is highly non-linear for the higher modes of vibration. The through-the-thickness variations
of the transverse shear stress o3 for the first four modes of vibration are given in Fig. 11. It is observed
that the transverse shear stress is very large at the edge of the PZT/substrate interface, as depicted by
plots of oy3 vs. x3 at x; =0.26L. The shear stresses are singular at the corners (0.25L,0.7H) and
(0.75L,0.7H) at the interface between the piezoelectric actuator and the graphite/epoxy substrate. These
corners, when viewed asymptotically, are special points where a PZT wedge comes in contact with a
graphite—epoxy surface. The mismatch in the material properties causes stress singularity at these points
(Vel and Batra, 2000b).

Mode 6: ® = 20.57

Fig. 9. The first six normalized natural frequencies and mode shapes for the graphite/epoxy cantilever plate with segmented actuator.
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Fig. 10. Through-the-thickness variation of the longitudinal stress for the first four modes of the graphite/epoxy cantilever plate with
segmented actuator.

6. Conclusions

We have extended the Stroh formalism to obtain an analytical solution for the steady state vibration of a
composite plate with either surface mounted or embedded piezoelectric patches. Fourier basis functions for
the mechanical displacements and electric potential that identically satisfy the equations of motion and
charge equation of electrostatics are used to solve the boundary value problem via the superposition
principle. The boundary conditions at the edges and continuity conditions at interfaces between adjoining
laminae are satisfied in the sense of Fourier series. The mechanical displacements, electric potential, stresses
and electric displacement can be computed to a desired degree of accuracy by retaining sufficiently large
number of terms in the series solution.

The solution procedure is validated by comparing the natural frequencies of a simply supported thick
piezoelectric plate with those given by Heyliger and Brooks (1995). We have computed the first 12 natural
frequencies and mode shapes for a two-layer graphite/epoxy-PZT cantilever composite plate. The analytical
displacements, stresses and electric potential compare very well with those obtained by the finite element
method. We have also analyzed the natural frequencies, mode shapes, displacements and stresses for a
cantilever graphite/epoxy lamina with a segmented PZT actuator on it top surface. The transverse shear
stress is very large at the edges of the PZT-substrate interface. As illustrated by the results, the method is
versatile and capable of analyzing piezoelectric composite plates subjected to arbitrary boundary conditions
at the edges.
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Fig. 11. Through-the-thickness variation of the transverse shear stress for the first four modes of the graphite/epoxy cantilever plate
with segmented actuator.

References

ABAQUS Users Manual, 2002. Version 6.3, Hibbit, Karlsson & Sorensen, Inc.

Allik, H., Hughes, T.J.R., 1970. Finite element method for piezoelectric vibration. International Journal for Numerical Methods in
Engineering 2, 151-157.

Bailey, T., Hubbard, J.E., 1985. Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance,
Control, and Dynamics 8, 605-611.

Batra, R.C., Aimmanee, S., 2003. Missing frequencies in previous exact solutions of free vibrations of simply supported rectangular
plates. Journal of Sound and Vibrations 265, 887-896.

Batra, R.C., Geng, T.S., 2002. Comparison of active constrained layer damping by using extension and shear mode actuators. Journal
of Intelligent Material Systems and Structures 12.

Batra, R.C., Ghosh, K., 1995. Deflection control during dynamic deformations of a rectangular plate using piezoceramic elements.
ATAA Journal 33, 1547-1548.

Batra, R.C., Liang, X.Q., 1997a. The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and
actuators. Computers and Structures 63, 203-216.

Batra, R.C., Liang, X.Q., 1997b. Finite dynamic deformations of smart structures. Computational Mechanics 20, 427-438.

Batra, R.C., Liang, X.Q., Yang, J.S., 1996a. The vibration of a simply supported rectangular elastic plate due to piezoelectric
actuators. International Journal of Solids and Structures 33, 1597-1618.

Batra, R.C., Liang, X.Q., Yang, J.S., 1996b. Shape control of vibrating simply supported rectangular plates. AIAA Journal 34, 116-
122.

Bisegna, P., Maceri, F., 1996. An exact three-dimensional solution for simply supported rectangular piezoelectric plates. Journal of
Applied Mechanics 63, 628-638.

Brooks, S., Heyliger, P., 1994. Static behavior of piezoelectric laminates with distributed and patched actuators. Journal of Intelligent
Material Systems and Structures 5, 635-646.



S.S. Vel et al. | International Journal of Solids and Structures 41 (2004) 1625-1643 1643

Crawley, E.F., Anderson, E.H., 1990. Detailed models of piezoceramic actuation of beams. Journal of Intelligent Material Systems and
Structures 1, 4-25.

Crawley, E.F., de Luis, J., 1987. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal 25, 1373-1385.

Eshelby, J.D., Read, W.T., Shockley, W., 1953. Anisotropic elasticity with applications to dislocation theory. Acta Metallurgica 1,
251-259.

Ghosh, K., Batra, R.C., 1995. Shape control of plates using piezoceramic elements. AIAA Journal 33, 1354-1357.

Ha, S.K., Keilers, C., Chang, F.K., 1992. Finite element analysis of composite structures containing piezoceramic sensors and
actuators. AIAA Journal 30, 772-780.

Heyliger, P., 1994. Static behavior of laminated elastic/piezoelectric plates. AIAA Journal 32, 2481-2484.

Heyliger, P., 1997. Exact solutions for simply supported laminated piezoelectric plates. Journal of Applied Mechanics 64, 299-306.

Heyliger, P., Brooks, S., 1995. Free vibration of piezoelectric laminates in cylindrical bending. International Journal of Solids and
Structures 32, 2945-2960.

Heyliger, P., Brooks, S., 1996. Exact solutions for laminated piezoelectric plates in cylindrical bending. Journal of Applied Mechanics
63, 903-910.

Heyliger, P., Saravanos, D.A., 1995. Exact free-vibration analysis of laminated plates with embedded piezoelectric layers. Journal of
the Acoustical Society of America 98, 1547-1555.

Lee, C.K., 1990. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. part 1: governing equations
and reciprocal relationships. Journal of the Acoustic Society of America 87, 1144-1158.

Lee, J.S., Jiang, L.Z., 1996. Exact electroelastic analysis of piezoelectric laminae via state space approach. International Journal of
Solids and Structures 33, 977-990.

Mitchell, J.A., Reddy, J.N., 1995. A refined hybrid plate theory for composite laminates with piezoelectric laminae. International
Journal of Solids and Structures 32, 2345-2367.

Robbins, D.H., Reddy, J.N., 1991. Analysis of piezoelectrically actuated beams using a layer-wise displacement theory. Computers and
Structures 41, 265-279.

Stroh, A.N., 1958. Dislocations and cracks in anisotropic elasticity. Philosophical Magazine 3, 625-646.

Tiersten, H.F., 1969. Linear piezoelectric plate vibrations. Plenum Press, New York.

Ting, T.C.T., 1996. Anisotropic Elasticity. Theory and Applications. In: Oxford Engineering Science Series, vol. 45. Oxford Univ
Press, New York.

Vel, S.S., Batra, R.C., 2000a. Three-dimensional analytical solution for hybrid multilayered piezoelectric plates. Journal of Applied
Mechanics 67, 558-567.

Vel, S.S., Batra, R.C., 2000b. Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors.
ATAA Journal 38, 857-867.

Vel, S.S., Batra, R.C., 2001a. Exact solution for the cylindrical bending of laminated plates with embedded shear actuators. Smart
Materials and Structures 10, 240-251.

Vel, S.S., Batra, R.C., 2001b. Exact solution for rectangular sandwich plates with embedded piezoelectric shear actuators. AIAA
Journal 39, 1363-1373.

Vel, S.S., Batra, R.C., 2002. Exact solutions for thermoelastic deformations of functionally graded thick rectangular plates. AIAA
Journal 40 (7), 1421-1433.

Vel, S.S., Batra, R.C., 2003. Exact thermoelasticity solution for cylindrical bending vibrations of functionally graded plates. In:
Watanabe, K., Ziegler, F. (Eds.), Proc. IUTAM Symp. on Dynamics of Advanced Materials and Smart Structures. Kluwer
Academic Publishers, Dordrecht, Boston, London, pp. 429-438.

Wang, B.T., Rogers, C.A., 1991. Laminate plate theory for spatially distributed induced strain actuators. Journal of Composite
Materials 25, 433-452.

Yang, J.S., Batra, R.C., Liang, X.Q., 1994. The cylindrical bending vibrations of a laminated elastic plate due to piezoelectric
actuators. Smart Materials and Structures 3, 485-493.



	Analytical solution for the cylindrical bending vibration of piezoelectric composite plates
	Introduction
	Problem formulation
	An analytical solution
	Sinusoidal basis functions in the x1-direction
	Sinusoidal basis functions in the x3-direction
	Superposition of basis functions

	Satisfaction of boundary and interface conditions
	Results and discussion
	Validation of the approach
	Two-layer cantilever composite plate
	Cantilever plate with surface-boded piezoelectric segmented actuator

	Conclusions
	References


